References
[1]
A.
K. Liljedahl et al., “Pan-Arctic ice-wedge
degradation in warming permafrost and its influence on tundra
hydrology,” Nature Geoscience, vol. 9, no. 4, pp.
312–318, Apr. 2016, doi: 10.1038/ngeo2674.
[2]
A.
A. Vasiliev, D. S. Drozdov, A. G. Gravis, G. V. Malkova, K. E. Nyland,
and D. A. Streletskiy, “Permafrost degradation in the
Western Russian Arctic,”
Environmental Research Letters, vol. 15, no. 4, p. 045001, Apr.
2020, doi: 10.1088/1748-9326/ab6f12.
[3]
S.
L. Smith, H. B. O’Neill, K. Isaksen, J. Noetzli, and V. E. Romanovsky,
“The changing thermal state of permafrost,” Nature
Reviews Earth & Environment, vol. 3, no. 1, pp. 10–23, Jan.
2022, doi: 10.1038/s43017-021-00240-1.
[4]
T.
A. Douglas, M. R. Turetsky, and C. D. Koven, “Increased rainfall
stimulates permafrost thaw across a variety of Interior
Alaskan boreal ecosystems,” npj Climate and
Atmospheric Science, vol. 3, no. 1, pp. 1–7, Jul. 2020, doi: 10.1038/s41612-020-0130-4.
[5]
R.
Í. Magnússon et al., “Extremely wet summer events enhance
permafrost thaw for multiple years in Siberian
tundra,” Nature Communications, vol. 13, no. 1, p. 1556,
Mar. 2022, doi: 10.1038/s41467-022-29248-x.
[6]
L.
M. Farquharson, V. E. Romanovsky, W. L. Cable, D. A. Walker, S. V.
Kokelj, and D. Nicolsky, “Climate Change
Drives Widespread and Rapid
Thermokarst Development in Very
Cold Permafrost in the Canadian
High Arctic,” Geophysical Research
Letters, vol. 46, no. 12, pp. 6681–6689, 2019, doi: 10.1029/2019GL082187.
[7]
D.
Notz and J. Stroeve, “Observed Arctic sea-ice loss
directly follows anthropogenic CO2 emission,”
Science, vol. 354, no. 6313, pp. 747–750, Nov. 2016, doi: 10.1126/science.aag2345.
[8]
D.
M. Nielsen, M. Dobrynin, J. Baehr, S. Razumov, and M. Grigoriev,
“Coastal Erosion Variability at the
Southern Laptev Sea
Linked to Winter Sea
Ice and the Arctic
Oscillation,” Geophysical Research Letters,
vol. 47, no. 5, p. e2019GL086876, 2020, doi: 10.1029/2019GL086876.
[9]
L.
Bruhwiler, F.-J. W. Parmentier, P. Crill, M. Leonard, and P. I. Palmer,
“The Arctic Carbon Cycle
and Its Response to Changing
Climate,” Current Climate Change Reports,
vol. 7, no. 1, pp. 14–34, Mar. 2021, doi: 10.1007/s40641-020-00169-5.
[10]
T.
K. F. Campbell, T. C. Lantz, R. H. Fraser, and D. Hogan, “High
Arctic Vegetation Change
Mediated by Hydrological
Conditions,” Ecosystems, vol. 24, no. 1,
pp. 106–121, Jan. 2021, doi: 10.1007/s10021-020-00506-7.
[11]
S.
C. Davidson et al., “Ecological insights from three
decades of animal movement tracking across a changing
Arctic,” Science, vol. 370, no. 6517, pp.
712–715, Nov. 2020, doi: 10.1126/science.abb7080.
[12]
L.
Suter, D. Streletskiy, and N. Shiklomanov, “Assessment of the cost
of climate change impacts on critical infrastructure in the circumpolar
Arctic,” Polar Geography, vol. 42, no. 4,
pp. 267–286, Oct. 2019, doi: 10.1080/1088937X.2019.1686082.
[13]
M.
L. Druckenmiller et al., “The
Arctic,” Bulletin of the American Meteorological
Society, vol. 102, no. 8, pp. S263–S316, Aug. 2021, doi: 10.1175/BAMS-D-21-0086.1.
[14]
M.
Philipp, A. Dietz, S. Buchelt, and C. Kuenzer, “Trends in
Satellite Earth Observation for
Permafrost Related
Analyses—A Review,”
Remote Sensing, vol. 13, no. 6, p. 1217, Jan. 2021, doi: 10.3390/rs13061217.
[17]
M.
I. Jordan and T. M. Mitchell, “Machine learning:
Trends, perspectives, and prospects,”
Science, vol. 349, no. 6245, pp. 255–260, Jul. 2015, doi: 10.1126/science.aaa8415.
[18]
A.
Vaswani et al., “Attention is all you need,” in
Advances in neural information processing systems, I. Guyon, U.
V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett, Eds., Curran Associates, Inc., 2017. Available: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
[19]
C.
Witharana et al., “An
Object-Based Approach for
Mapping Tundra
Ice-Wedge Polygon
Troughs from Very High
Spatial Resolution Optical
Satellite Imagery,” Remote
Sensing, vol. 13, no. 4, p. 558, Jan. 2021, doi: 10.3390/rs13040558.
[20]
C.
Witharana et al., “Ice-wedge polygon detection in
satellite imagery from pan-Arctic regions,
Permafrost Discovery Gateway,
2001-2021,” 2023, doi: 10.18739/A2KW57K57.
[21]
L.
Edwards and M. Veale, “Enslaving the Algorithm:
From a ‘Right to an
Explanation’ to a ‘Right to
Better Decisions’?” Social
Science Research Network, Rochester, NY, 2018. doi: 10.2139/ssrn.3052831.
[22]
S.
Fink, “This High-Tech
Solution to Disaster Response
May Be Too Good to
Be True,” The New York Times,
Aug. 2019, Accessed: Oct. 19, 2024. [Online]. Available: https://www.nytimes.com/2019/08/09/us/emergency-response-disaster-technology.html
[23]
D.
Leslie, “Understanding artificial intelligence ethics and safety:
A guide for the responsible design and implementation of
AI systems in the public sector,” Zenodo, Jun. 2019.
doi: 10.5281/zenodo.3240529.
[24]
S.
Lo Piano, “Ethical principles in machine learning and artificial
intelligence: Cases from the field and possible ways forward,”
Humanities and Social Sciences Communications, vol. 7, no. 1,
pp. 1–7, Jun. 2020, doi: 10.1057/s41599-020-0501-9.
[25]
A.
McGovern, I. Ebert-Uphoff, D. J. G. Ii, and A. Bostrom, “Why we
need to focus on developing ethical, responsible, and trustworthy
artificial intelligence approaches for environmental science,”
Environmental Data Science, vol. 1, p. e6, Jan. 2022, doi: 10.1017/eds.2022.5.
[26]
T.
Shepherd, “Indigenous rangers to use SpaceCows
program to protect sacred sites and rock art from feral herds,”
The Guardian, Sep. 2021, Accessed: Oct. 19, 2024. [Online].
Available: https://www.theguardian.com/australia-news/2021/sep/15/indigenous-rangers-to-use-spacecows-program-to-protect-sacred-sites-and-rock-art-from-feral-herds
[27]
CSIRO, “SpaceCows:
Using AI to tackle feral herds in the
Top End.” Accessed: Oct. 19, 2024.
[Online]. Available: https://www.csiro.au/en/news/All/News/2021/September/SpaceCows-Using-AI-to-tackle-feral-herds-in-the-Top-End
[28]
A.
D. S. A. (ADSA), “The Data Science
Ethos - Operationalizing Ethics
in Data Science,” The Data Science
Ethos. Accessed: Oct. 19, 2024. [Online]. Available: https://ethos.academicdatascience.org/
[29]
W.
Chen and A. Quan-Haase, “Big Data Ethics
and Politics: Toward New
Understandings,” Social Science Computer
Review, vol. 38, no. 1, pp. 3–9, Feb. 2020, doi: 10.1177/0894439318810734.
[31]
J.
Gray and A. Witt, “A feminist data ethics of care for machine
learning: The what, why, who and how,” First
Monday, Dec. 2021, doi: 10.5210/fm.v26i12.11833.
[33]
S.
Long and T. Romanoff, “AI-Ready
Open Data.”
AI-Ready Open Data
Bipartisan Policy
Center, 2023. Accessed: Oct. 19, 2024. [Online]. Available:
https://bipartisanpolicy.org/explainer/ai-ready-open-data/
[34]
O.
Benjelloun et al., “Croissant Format
Specification,” Croissant site. 2024.
Accessed: Oct. 20, 2024. [Online]. Available: https://docs.mlcommons.org/croissant/docs/croissant-spec.html
[35]
M.
D. Mahecha et al., “Earth system data cubes unravel
global multivariate dynamics,” Earth System Dynamics,
vol. 11, no. 1, pp. 201–234, Feb. 2020, doi: 10.5194/esd-11-201-2020.
[37]
O.
J. Reichman, M. B. Jones, and M. P. Schildhauer, “Challenges and
opportunities of open data in ecology.” Science (New York,
N.Y.), vol. 331, no. 6018, pp. 703–5, Feb. 2011, doi: 10.1126/science.1197962.
[38]
I.
Nitze et al., “DARTS:
Multi-year database of AI detected
retrogressive thaw slumps (RTS) and active layer detachment
slides (ALD) in hotspots of the circum-arctic permafrost
region - v1,” 2024, doi: 10.18739/A2RR1PP44.
[39]
A.
D. of F. Game, D. of C. and Fisheries, and A.-Y.-K. Region,
“Salmon age, sex, and length data from
Arctic-Yukon-Kuskokwim
Region of Alaska, 1960-2017,” 2018,
doi: 10.5063/SN07CZ.
[40]
M.
D. Wilkinson et al., “The FAIR
Guiding Principles for scientific data
management and stewardship,” Scientific Data, vol. 3, p.
160018, Mar. 2016, doi: 10.1038/sdata.2016.18.
[41]
M.
D. Wilkinson, S.-A. Sansone, E. Schultes, P. Doorn, L. O. Bonino da
Silva Santos, and M. Dumontier, “A design framework and exemplar
metrics for FAIRness,” Scientific Data,
vol. 5, p. 180118, Jun. 2018, doi: 10.1038/sdata.2018.118.
[42]
G.
Peng et al., “Harmonizing quality measures of
FAIRness assessment towards machine-actionable quality
information,” International Journal of Digital Earth,
vol. 17, no. 1, p. 2390431, Dec. 2024, doi: 10.1080/17538947.2024.2390431.
[43]
M.
Jones et al., “MetaDIG:
Engaging Scientists in the
Improvement of Metadata and
Data,” Figshare, 2016, doi: 10.6084/m9.figshare.4055808.v1.
[44]
M.
Jones, P. Slaughter, and T. Habermann, “Quantifying
FAIR: Metadata improvement and guidance in the
DataONE repository network.” 2019. doi: https://doi.org/10.5063/f1kp80gx.
[45]
S.
S. Chong, M. Schildhauer, M. O’Brien, B. Mecum, and M. B. Jones,
“Enhancing the FAIRness of Arctic
Research Data Through
Semantic Annotation,” Data Science
Journal, vol. 23, no. 1, Jan. 2024, doi: 10.5334/dsj-2024-002.
[46]
R.
Bommasani et al., “On the opportunities and risks of
foundation models,” ArXiv, 2021, Available: https://crfm.stanford.edu/assets/report.pdf
[47]
A.
Radford et al., “Learning transferable visual models from
natural language supervision,” CoRR, vol.
abs/2103.00020, 2021, Available: https://arxiv.org/abs/2103.00020
[48]
J.
Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-training of deep bidirectional transformers for language
understanding,” CoRR, vol. abs/1810.04805, 2018,
Available: http://arxiv.org/abs/1810.04805
[49]
OpenAI et al., “GPT-4 technical
report.” 2024. Available: https://arxiv.org/abs/2303.08774
[50]
A.
Dubey et al., “The llama 3 herd of models.” 2024.
Available: https://arxiv.org/abs/2407.21783
[51]
A.
Kirillov et al., “Segment anything.” 2023.
Available: https://arxiv.org/abs/2304.02643
[52]
Z.
Liu et al., “Swin transformer: Hierarchical vision
transformer using shifted windows.” 2021. Available: https://arxiv.org/abs/2103.14030
[53]
A.
Ramesh et al., “Zero-shot text-to-image
generation,” CoRR, vol. abs/2102.12092, 2021, Available:
https://arxiv.org/abs/2102.12092
[54]
Y.
Liu et al., “Sora: A review on background, technology,
limitations, and opportunities of large vision models.” 2024.
Available: https://arxiv.org/abs/2402.17177
[55]
G.
Team et al., “Gemini: A family of highly capable
multimodal models.” 2024. Available: https://arxiv.org/abs/2312.11805
[56]
A.
Vaswani et al., “Attention is all you need,”
CoRR, vol. abs/1706.03762, 2017, Available: http://arxiv.org/abs/1706.03762
[57]
L.
Weng, “Attention? attention!”
lilianweng.github.io, 2018, Available: https://lilianweng.github.io/posts/2018-06-24-attention/
[58]
J.
Cheng, L. Dong, and M. Lapata, “Long short-term memory-networks
for machine reading,” CoRR, vol. abs/1601.06733, 2016,
Available: http://arxiv.org/abs/1601.06733
[59]
X.
Amatriain, A. Sankar, J. Bing, P. K. Bodigutla, T. J. Hazen, and M.
Kazi, “Transformer models: An introduction and catalog.”
2024. Available: https://arxiv.org/abs/2302.07730
[60]
I.
J. Goodfellow et al., “Generative adversarial
networks.” 2014. Available: https://arxiv.org/abs/1406.2661
[61]
T.
Karras, S. Laine, and T. Aila, “A style-based generator
architecture for generative adversarial networks,” CoRR,
vol. abs/1812.04948, 2018, Available: http://arxiv.org/abs/1812.04948
[62]
A.
Brock, J. Donahue, and K. Simonyan, “Large scale GAN
training for high fidelity natural image synthesis,”
CoRR, vol. abs/1809.11096, 2018, Available: http://arxiv.org/abs/1809.11096
[63]
L.
Weng, “What are diffusion models?”
lilianweng.github.io, Jul. 2021, Available: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
[64]
J.
Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” CoRR, vol. abs/2006.11239, 2020, Available: https://arxiv.org/abs/2006.11239
[65]
R.
Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion
models,” CoRR, vol. abs/2112.10752, 2021, Available: https://arxiv.org/abs/2112.10752
[66]
N.
Ravi et al., “SAM 2: Segment anything in images and
videos,” arXiv preprint arXiv:2408.00714, 2024,
Available: https://arxiv.org/abs/2408.00714
[67]
P.
S. H. Lewis et al., “Retrieval-augmented generation for
knowledge-intensive NLP tasks,” CoRR, vol.
abs/2005.11401, 2020, Available: https://arxiv.org/abs/2005.11401
[68]
L.
Weng, “Extrinsic hallucinations in LLMs.”
lilianweng.github.io, Jul. 2024, Available: https://lilianweng.github.io/posts/2024-07-07-hallucination/
[69]
L.
Weng, “Prompt engineering,” lilianweng.github.io,
Mar. 2023, Available: https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
[70]
P.
Norvig and S. J. Russell, Artificial intelligence: A modern
approach, 3rd ed. Pearson, 2004. Available: https://books.google.com/books/about/Artificial_Intelligence.html?id=8jZBksh-bUMC
[71]
D.
O. Hebb, The organization of behavior: A neuropsychological
theory. New York: Wiley, 1949. Available: https://en.wikipedia.org/wiki/The_Organization_of_Behavior
[72]
F.
Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychological
Review, vol. 65, no. 6, pp. 386–408, 1958, doi: 10.1037/H0042519.
[73]
M.
Bennett, A brief history of intelligence: Evolution, AI, and the
five breakthroughs that made our brains, Hardcover. Harper,
2023.
[74]
Inc. PitchBook Data, “Artificial
intelligence & machine learning report, Q2 2024,” PitchBook,
2024. Available: https://pitchbook.com/news/reports/q2-2024-artificial-intelligence-machine-learning-report
[75]
D.
Kawahara, S. Ozeki, and I. Mizuuchi, “A curiosity algorithm for
robots based on the free energy principle,” pp. 53–59, 2022, doi:
10.1109/SII52469.2022.9708819.
[76]
T.
Wang, F. Wang, Z. Xie, and F. Qin, “Curiosity model policy
optimization for robotic manipulator tracking control with input
saturation in uncertain environment,” Frontiers in
Neurorobotics, vol. 18, 2024, doi: 10.3389/fnbot.2024.1376215.
[77]
IBM, “What Is
Image Segmentation?
IBM.” Sep. 2023. Accessed: Dec. 21, 2024. [Online].
Available: https://www.ibm.com/think/topics/image-segmentation
[78]
N.
Ravi et al., “SAM 2: Segment
Anything in Images and
Videos.” arXiv, Oct. 2024. doi: 10.48550/arXiv.2408.00714.
[79]
J.
Amundson, “LeConte Glacier
Unmanned Aerial Vehicle
(UAV) imagery, LeConte Glacier,
Alaska, 2018,” 2019, doi: 10.18739/A2445HC19.