References

[1]
A. K. Liljedahl et al., “Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology,” Nature Geoscience, vol. 9, no. 4, pp. 312–318, Apr. 2016, doi: 10.1038/ngeo2674.
[2]
A. A. Vasiliev, D. S. Drozdov, A. G. Gravis, G. V. Malkova, K. E. Nyland, and D. A. Streletskiy, “Permafrost degradation in the Western Russian Arctic,” Environmental Research Letters, vol. 15, no. 4, p. 045001, Apr. 2020, doi: 10.1088/1748-9326/ab6f12.
[3]
S. L. Smith, H. B. O’Neill, K. Isaksen, J. Noetzli, and V. E. Romanovsky, “The changing thermal state of permafrost,” Nature Reviews Earth & Environment, vol. 3, no. 1, pp. 10–23, Jan. 2022, doi: 10.1038/s43017-021-00240-1.
[4]
T. A. Douglas, M. R. Turetsky, and C. D. Koven, “Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems,” npj Climate and Atmospheric Science, vol. 3, no. 1, pp. 1–7, Jul. 2020, doi: 10.1038/s41612-020-0130-4.
[5]
R. Í. Magnússon et al., “Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra,” Nature Communications, vol. 13, no. 1, p. 1556, Mar. 2022, doi: 10.1038/s41467-022-29248-x.
[6]
L. M. Farquharson, V. E. Romanovsky, W. L. Cable, D. A. Walker, S. V. Kokelj, and D. Nicolsky, “Climate Change Drives Widespread and Rapid Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic,” Geophysical Research Letters, vol. 46, no. 12, pp. 6681–6689, 2019, doi: 10.1029/2019GL082187.
[7]
D. Notz and J. Stroeve, “Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission,” Science, vol. 354, no. 6313, pp. 747–750, Nov. 2016, doi: 10.1126/science.aag2345.
[8]
D. M. Nielsen, M. Dobrynin, J. Baehr, S. Razumov, and M. Grigoriev, “Coastal Erosion Variability at the Southern Laptev Sea Linked to Winter Sea Ice and the Arctic Oscillation,” Geophysical Research Letters, vol. 47, no. 5, p. e2019GL086876, 2020, doi: 10.1029/2019GL086876.
[9]
L. Bruhwiler, F.-J. W. Parmentier, P. Crill, M. Leonard, and P. I. Palmer, “The Arctic Carbon Cycle and Its Response to Changing Climate,” Current Climate Change Reports, vol. 7, no. 1, pp. 14–34, Mar. 2021, doi: 10.1007/s40641-020-00169-5.
[10]
T. K. F. Campbell, T. C. Lantz, R. H. Fraser, and D. Hogan, “High Arctic Vegetation Change Mediated by Hydrological Conditions,” Ecosystems, vol. 24, no. 1, pp. 106–121, Jan. 2021, doi: 10.1007/s10021-020-00506-7.
[11]
S. C. Davidson et al., “Ecological insights from three decades of animal movement tracking across a changing Arctic,” Science, vol. 370, no. 6517, pp. 712–715, Nov. 2020, doi: 10.1126/science.abb7080.
[12]
L. Suter, D. Streletskiy, and N. Shiklomanov, “Assessment of the cost of climate change impacts on critical infrastructure in the circumpolar Arctic,” Polar Geography, vol. 42, no. 4, pp. 267–286, Oct. 2019, doi: 10.1080/1088937X.2019.1686082.
[13]
M. L. Druckenmiller et al., “The Arctic,” Bulletin of the American Meteorological Society, vol. 102, no. 8, pp. S263–S316, Aug. 2021, doi: 10.1175/BAMS-D-21-0086.1.
[14]
M. Philipp, A. Dietz, S. Buchelt, and C. Kuenzer, “Trends in Satellite Earth Observation for Permafrost Related AnalysesA Review,” Remote Sensing, vol. 13, no. 6, p. 1217, Jan. 2021, doi: 10.3390/rs13061217.
[15]
“Changing state of Arctic sea ice across all seasons - IOPscience.” Accessed: Oct. 18, 2024. [Online]. Available: https://iopscience.iop.org/article/10.1088/1748-9326/aade56
[16]
AI in Analytics: Top Use Cases and Tools.” Accessed: Oct. 18, 2024. [Online]. Available: https://www.marketingaiinstitute.com/blog/how-to-use-artificial-intelligence-for-analytics
[17]
M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, Jul. 2015, doi: 10.1126/science.aaa8415.
[18]
A. Vaswani et al., “Attention is all you need,” in Advances in neural information processing systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., Curran Associates, Inc., 2017. Available: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
[19]
C. Witharana et al., “An Object-Based Approach for Mapping Tundra Ice-Wedge Polygon Troughs from Very High Spatial Resolution Optical Satellite Imagery,” Remote Sensing, vol. 13, no. 4, p. 558, Jan. 2021, doi: 10.3390/rs13040558.
[20]
C. Witharana et al., “Ice-wedge polygon detection in satellite imagery from pan-Arctic regions, Permafrost Discovery Gateway, 2001-2021,” 2023, doi: 10.18739/A2KW57K57.
[21]
L. Edwards and M. Veale, “Enslaving the Algorithm: From a Right to an Explanation to a Right to Better Decisions?” Social Science Research Network, Rochester, NY, 2018. doi: 10.2139/ssrn.3052831.
[22]
S. Fink, “This High-Tech Solution to Disaster Response May Be Too Good to Be True,” The New York Times, Aug. 2019, Accessed: Oct. 19, 2024. [Online]. Available: https://www.nytimes.com/2019/08/09/us/emergency-response-disaster-technology.html
[23]
D. Leslie, “Understanding artificial intelligence ethics and safety: A guide for the responsible design and implementation of AI systems in the public sector,” Zenodo, Jun. 2019. doi: 10.5281/zenodo.3240529.
[24]
S. Lo Piano, “Ethical principles in machine learning and artificial intelligence: Cases from the field and possible ways forward,” Humanities and Social Sciences Communications, vol. 7, no. 1, pp. 1–7, Jun. 2020, doi: 10.1057/s41599-020-0501-9.
[25]
A. McGovern, I. Ebert-Uphoff, D. J. G. Ii, and A. Bostrom, “Why we need to focus on developing ethical, responsible, and trustworthy artificial intelligence approaches for environmental science,” Environmental Data Science, vol. 1, p. e6, Jan. 2022, doi: 10.1017/eds.2022.5.
[26]
T. Shepherd, “Indigenous rangers to use SpaceCows program to protect sacred sites and rock art from feral herds,” The Guardian, Sep. 2021, Accessed: Oct. 19, 2024. [Online]. Available: https://www.theguardian.com/australia-news/2021/sep/15/indigenous-rangers-to-use-spacecows-program-to-protect-sacred-sites-and-rock-art-from-feral-herds
[27]
CSIRO, SpaceCows: Using AI to tackle feral herds in the Top End.” Accessed: Oct. 19, 2024. [Online]. Available: https://www.csiro.au/en/news/All/News/2021/September/SpaceCows-Using-AI-to-tackle-feral-herds-in-the-Top-End
[28]
A. D. S. A. (ADSA), “The Data Science Ethos - Operationalizing Ethics in Data Science,” The Data Science Ethos. Accessed: Oct. 19, 2024. [Online]. Available: https://ethos.academicdatascience.org/
[29]
W. Chen and A. Quan-Haase, “Big Data Ethics and Politics: Toward New Understandings,” Social Science Computer Review, vol. 38, no. 1, pp. 3–9, Feb. 2020, doi: 10.1177/0894439318810734.
[30]
“Excavating AI.” Accessed: Oct. 19, 2024. [Online]. Available: https://excavating.ai/
[31]
J. Gray and A. Witt, “A feminist data ethics of care for machine learning: The what, why, who and how,” First Monday, Dec. 2021, doi: 10.5210/fm.v26i12.11833.
[32]
“Checklist to Examine AI-readiness for Open Environmental Datasets,” figshare. Jun. 2022. doi: 10.6084/m9.figshare.19983722.v1.
[33]
S. Long and T. Romanoff, AI-Ready Open Data.” AI-Ready Open Data Bipartisan Policy Center, 2023. Accessed: Oct. 19, 2024. [Online]. Available: https://bipartisanpolicy.org/explainer/ai-ready-open-data/
[34]
O. Benjelloun et al., “Croissant Format Specification,” Croissant site. 2024. Accessed: Oct. 20, 2024. [Online]. Available: https://docs.mlcommons.org/croissant/docs/croissant-spec.html
[35]
M. D. Mahecha et al., “Earth system data cubes unravel global multivariate dynamics,” Earth System Dynamics, vol. 11, no. 1, pp. 201–234, Feb. 2020, doi: 10.5194/esd-11-201-2020.
[36]
ERA5 hourly data on single levels from 1940 to present.” doi: https://doi.org/10.24381/cds.adbb2d47.
[37]
O. J. Reichman, M. B. Jones, and M. P. Schildhauer, “Challenges and opportunities of open data in ecology.” Science (New York, N.Y.), vol. 331, no. 6018, pp. 703–5, Feb. 2011, doi: 10.1126/science.1197962.
[38]
I. Nitze et al., DARTS: Multi-year database of AI detected retrogressive thaw slumps (RTS) and active layer detachment slides (ALD) in hotspots of the circum-arctic permafrost region - v1,” 2024, doi: 10.18739/A2RR1PP44.
[39]
A. D. of F. Game, D. of C. and Fisheries, and A.-Y.-K. Region, “Salmon age, sex, and length data from Arctic-Yukon-Kuskokwim Region of Alaska, 1960-2017,” 2018, doi: 10.5063/SN07CZ.
[40]
M. D. Wilkinson et al., “The FAIR Guiding Principles for scientific data management and stewardship,” Scientific Data, vol. 3, p. 160018, Mar. 2016, doi: 10.1038/sdata.2016.18.
[41]
M. D. Wilkinson, S.-A. Sansone, E. Schultes, P. Doorn, L. O. Bonino da Silva Santos, and M. Dumontier, “A design framework and exemplar metrics for FAIRness,” Scientific Data, vol. 5, p. 180118, Jun. 2018, doi: 10.1038/sdata.2018.118.
[42]
G. Peng et al., “Harmonizing quality measures of FAIRness assessment towards machine-actionable quality information,” International Journal of Digital Earth, vol. 17, no. 1, p. 2390431, Dec. 2024, doi: 10.1080/17538947.2024.2390431.
[43]
M. Jones et al., MetaDIG: Engaging Scientists in the Improvement of Metadata and Data,” Figshare, 2016, doi: 10.6084/m9.figshare.4055808.v1.
[44]
M. Jones, P. Slaughter, and T. Habermann, “Quantifying FAIR: Metadata improvement and guidance in the DataONE repository network.” 2019. doi: https://doi.org/10.5063/f1kp80gx.
[45]
S. S. Chong, M. Schildhauer, M. O’Brien, B. Mecum, and M. B. Jones, “Enhancing the FAIRness of Arctic Research Data Through Semantic Annotation,” Data Science Journal, vol. 23, no. 1, Jan. 2024, doi: 10.5334/dsj-2024-002.
[46]
R. Bommasani et al., “On the opportunities and risks of foundation models,” ArXiv, 2021, Available: https://crfm.stanford.edu/assets/report.pdf
[47]
A. Radford et al., “Learning transferable visual models from natural language supervision,” CoRR, vol. abs/2103.00020, 2021, Available: https://arxiv.org/abs/2103.00020
[48]
J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, BERT: Pre-training of deep bidirectional transformers for language understanding,” CoRR, vol. abs/1810.04805, 2018, Available: http://arxiv.org/abs/1810.04805
[49]
OpenAI et al., “GPT-4 technical report.” 2024. Available: https://arxiv.org/abs/2303.08774
[50]
A. Dubey et al., “The llama 3 herd of models.” 2024. Available: https://arxiv.org/abs/2407.21783
[51]
A. Kirillov et al., “Segment anything.” 2023. Available: https://arxiv.org/abs/2304.02643
[52]
Z. Liu et al., “Swin transformer: Hierarchical vision transformer using shifted windows.” 2021. Available: https://arxiv.org/abs/2103.14030
[53]
A. Ramesh et al., “Zero-shot text-to-image generation,” CoRR, vol. abs/2102.12092, 2021, Available: https://arxiv.org/abs/2102.12092
[54]
Y. Liu et al., “Sora: A review on background, technology, limitations, and opportunities of large vision models.” 2024. Available: https://arxiv.org/abs/2402.17177
[55]
G. Team et al., “Gemini: A family of highly capable multimodal models.” 2024. Available: https://arxiv.org/abs/2312.11805
[56]
A. Vaswani et al., “Attention is all you need,” CoRR, vol. abs/1706.03762, 2017, Available: http://arxiv.org/abs/1706.03762
[57]
L. Weng, “Attention? attention!” lilianweng.github.io, 2018, Available: https://lilianweng.github.io/posts/2018-06-24-attention/
[58]
J. Cheng, L. Dong, and M. Lapata, “Long short-term memory-networks for machine reading,” CoRR, vol. abs/1601.06733, 2016, Available: http://arxiv.org/abs/1601.06733
[59]
X. Amatriain, A. Sankar, J. Bing, P. K. Bodigutla, T. J. Hazen, and M. Kazi, “Transformer models: An introduction and catalog.” 2024. Available: https://arxiv.org/abs/2302.07730
[60]
I. J. Goodfellow et al., “Generative adversarial networks.” 2014. Available: https://arxiv.org/abs/1406.2661
[61]
T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative adversarial networks,” CoRR, vol. abs/1812.04948, 2018, Available: http://arxiv.org/abs/1812.04948
[62]
A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training for high fidelity natural image synthesis,” CoRR, vol. abs/1809.11096, 2018, Available: http://arxiv.org/abs/1809.11096
[63]
L. Weng, “What are diffusion models?” lilianweng.github.io, Jul. 2021, Available: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
[64]
J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” CoRR, vol. abs/2006.11239, 2020, Available: https://arxiv.org/abs/2006.11239
[65]
R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” CoRR, vol. abs/2112.10752, 2021, Available: https://arxiv.org/abs/2112.10752
[66]
N. Ravi et al., “SAM 2: Segment anything in images and videos,” arXiv preprint arXiv:2408.00714, 2024, Available: https://arxiv.org/abs/2408.00714
[67]
P. S. H. Lewis et al., “Retrieval-augmented generation for knowledge-intensive NLP tasks,” CoRR, vol. abs/2005.11401, 2020, Available: https://arxiv.org/abs/2005.11401
[68]
L. Weng, “Extrinsic hallucinations in LLMs.” lilianweng.github.io, Jul. 2024, Available: https://lilianweng.github.io/posts/2024-07-07-hallucination/
[69]
L. Weng, “Prompt engineering,” lilianweng.github.io, Mar. 2023, Available: https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/